Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667675

RESUMEN

Recently, interest in polyphenol-containing composite adhesives for various biomedical applications has been growing. Tannic acid (TA) is a polyphenolic compound with advantageous properties, including antioxidant and antimicrobial properties. Additionally, TA contains multiple hydroxyl groups that exhibit biological activity by forming hydrogen bonds with proteins and biomacromolecules. Furthermore, TA-containing polymer composites exhibit excellent tissue adhesion properties. In this study, the gelation behavior and adhesion forces of TA/Pluronic F127 (TA/PluF) composite hydrogels were investigated by varying the TA and PluF concentrations. PluF (above 16 wt%) alone showed temperature-responsive gelation behavior because of the closely packed micelle aggregates. After the addition of a small amount of TA, the TA/PluF hydrogels showed thermosensitive behavior similar to that of PluF hydrogels. However, the TA/PluF hydrogels containing more than 10 wt% TA completely suppressed the thermo-responsive gelation kinetics of PluF, which may have been due to the hydrogen bonds between TA and PluF. In addition, TA/PluF hydrogels with 40 wt% TA showed excellent tissue adhesion properties and bursting pressure in porcine intestinal tissues. These results are expected to aid in understanding the use of mixtures of TA and thermosensitive block copolymers to fabricate adhesive hydrogels for versatile biomedical applications.

2.
Materials (Basel) ; 17(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473595

RESUMEN

In this study, we have improved the power factor of conductive polymer nanocomposites by combining layer-by-layer assembly with electrochemical deposition to produce flexible thermoelectric materials based on PEDOT/carbon nanotubes (CNTs)-films. To produce films based on CNTs and PEDOT, a dual approach has been employed: (i) the layer-by-layer method has been utilized for constructing the CNTs layer and (ii) electrochemical polymerization has been used in the synthesis of the conducting polymer. Moreover, the thermoelectric properties were optimized by controlling the experimental conditions including the number of deposition cycles and electropolymerizing time. The electrical characterization of the samples was carried out by measuring the Seebeck voltage produced under a small temperature difference and by measuring the electrical conductivity using the four-point probe method. The resulting values of the Seebeck coefficient S and σ were used to determine the power factor. The structural and morphological analyses of CNTs/PEDOT samples were carried out using scanning electron microscopy (SEM) and Raman spectroscopy. The best power factor achieved was 131.1 (µWm-1K-2), a competitive value comparable to some inorganic thermoelectric materials. Since the synthesis of the CNT/PEDOT layers is rather simple and the ingredients used are relatively inexpensive and environmentally friendly, the proposed nanocomposites are a very interesting approach as an application for recycling heat waste.

3.
ACS Omega ; 9(6): 6606-6615, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371790

RESUMEN

In an effort to reduce the flammability of synthetic polymeric materials such as cotton fabrics and polyurethane foam (PUF), hybrid nanocoatings are prepared by layer-by-layer assembly. Multilayered nanocomposites of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), are paired with two kinds of clay nanoplatelets, montmorillonite (MMT) and vermiculite (VMT). The physical properties such as thickness and mass and thermal behaviors in clay-based nanocoatings with and without incorporation of tris buffer are compared to assess the effectiveness of amine salts on flame retardant (FR) performances. A PDDA-tris/VMT-MMT system, in which tris buffer is introduced into the cationic PDDA aqueous solution, produces a thicker and heavier coating. Three different systems, including PDDA/MMT, PDDA/VMT-MMT, and PDDA-tris/VMT-MMT, result in conformal coating, retaining the weave structure of the fabrics after being exposed to a vertical and horizontal flame test, while the uncoated sample is completely burned out. The synergistic effects of dual clay-based hybrid nanocoatings are greatly improved by adding amine salts. Cone calorimetry reveals that the PDDA-tris/VMT-MMT-coated PUF eliminates a second peak heat release rate and significantly reduces other FR performances, compared to those obtained from the clay-based multilayer films with no amine salts added. Ten bilayers of PDDA-tris/VMT-MMT (≈250 nm thick) maintain the shape of foam after exposure to a butane torch flame for 12 s. As for practical use of these nanocomposites in real fire disasters, spray-assisted PDDA-tris/VMT-MMT multilayers on woods exhibit high resistance over flammability. Improved fire resistance in PDDA-tris/VMT-MMT is believed to be due to the enhanced char yield through the addition of tris buffer that promotes the deposition of more clay particles while retaining a highly ordered deposition of a densely packed nanobrick wall structure. This work demonstrates the ability to impart significant fire resistance to synthetic polymer materials in a fully renewable nanocoating that uses environmentally benign chemistry.

4.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903743

RESUMEN

Thermoelectric (TE) materials have been considered as a promising energy harvesting technology for sustainably providing power to electronic devices. In particular, organic-based TE materials that consist of conducting polymers and carbon nanofillers make a large variety of applications. In this work, we develop organic TE nanocomposites via successive spraying of intrinsically conductive polymers such as polyaniline (PANi) and poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate) (PEDOT:PSS) and carbon nanofillers, and single-walled carbon nanotubes (SWNT). It is found that the growth rate of the layer-by-layer (LbL) thin films, which comprise a PANi/SWNT-PEDOT:PSS repeating sequence, made by the spraying method is greater than that of the same ones assembled by traditional dip coating. The surface structure of multilayer thin films constructed by the spraying approach show excellent coverage of highly networked individual and bundled SWNT, which is similarly to what is observed when carbon nanotubes-based LbL assemblies are formed by classic dipping. The multilayer thin films via the spray-assisted LbL process exhibit significantly improved TE performances. A 20-bilayer PANi/SWNT-PEDOT:PSS thin film (~90 nm thick) yields an electrical conductivity of 14.3 S/cm and Seebeck coefficient of 76 µV/K. These two values translate to a power factor of 8.2 µW/m·K2, which is 9 times as large as the same films fabricated by a classic immersion process. We believe that this LbL spraying method will open up many opportunities in developing multifunctional thin films for large-scaled industrial use due to rapid processing and the ease with which it is applied.

5.
Nanomaterials (Basel) ; 10(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878005

RESUMEN

A stretchable organic thermoelectric multilayer is achieved by alternately depositing bilayers (BL) of 0.1 wt% polyethylene oxide (PEO) and 0.03 wt% double walled carbon nanotubes (DWNT), dispersed with 0.1 wt% polyacrylic acid (PAA), by the layer-by-layer assembly technique. A 25 BL thin film (~500 nm thick), composed of a PEO/DWNT-PAA sequence, displays electrical conductivity of 19.6 S/cm and a Seebeck coefficient of 60 µV/K, which results in a power factor of 7.1 µW/m·K2. The resultant nanocomposite exhibits a crack-free surface up to 30% strain and retains its thermoelectric performance, decreasing only 10% relative to the unstretched one. Even after 1000 cycles of bending and twisting, the thermoelectric behavior of this nanocomposite is stable. The synergistic combination of the elastomeric mechanical properties (originated from PEO/PAA systems) and thermoelectric behaviors (resulting from a three-dimensional conjugated network of DWNT) opens up the possibility of achieving various applications such as wearable electronics and sensors that require high mechanical compliance.

6.
Micromachines (Basel) ; 9(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513632

RESUMEN

Environmental energy issues caused by the burning of fossil fuel such as coal, and petroleum, and the limited resources along with the increasing world population pose a world-wide challenge. Alternative energy sources including solar energy, wind energy, and biomass energy, have been suggested as practical and affordable solutions to future energy needs. Among energy conversion technologies, thermoelectric (TE) materials are considered one of the most potential candidates to play a crucial role in addressing today's global energy issues. TE materials can convert waste heat such as the sun, automotive exhaust, and industrial processes to a useful electrical voltage with no moving parts, no hazardous working chemical-fluids, low maintenance costs, and high reliability. These advantages of TE conversion provide solutions to solve the energy crisis. Here, we provide a comprehensive review of the recent progress on organic TE materials, focused on polymers and their corresponding organic composites incorporated with carbon nanofillers (including graphene and carbon nanotubes). Various strategies to enhance the TE properties, such as electrical conductivity and the Seebeck coefficient, in polymers and polymer composites will be highlighted. Then, a discussion on polymer composite based TE devices is summarized. Finally, brief conclusions and outlooks for future research efforts are presented.

7.
Adv Mater ; 30(11)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29356158

RESUMEN

Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

8.
ACS Appl Mater Interfaces ; 9(7): 6306-6313, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28128932

RESUMEN

In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 µm thick) infused with PEDOT is shown to achieve a power factor (PF = S2σ) of 155 µW/m K2, which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 µW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.

9.
Nanotechnology ; 26(18): 185703, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25872516

RESUMEN

In an effort to speed up the layer-by-layer (LbL) deposition technique, electrophoretic deposition (EPD) is employed with weak polyelectrolytes and clay nanoplatelets. The introduction of an electric field results in nearly an order of magnitude increase in thickness relative to conventional LbL deposition for a given number of deposited layers. A higher clay concentration also results with the EPD-LbL process, which produces higher modulus and strength with fewer deposited layers. A 20 quadlayer (QL) assembly of linear polyethyleneimine (LPEI)/poly(acrylic acid)/LPEI/clay has an elastic modulus of 45 GPa, tensile strength of 70 MPa, and thickness of 4.4 µm. Traditional LbL requires 40 QL to achieve the same thickness, with lower modulus and strength. This study reveals how these films grow and maintain a highly ordered nanobrick wall structure that is commonly associated with LbL deposition. Fewer layers required to achieve improved properties will open up many new opportunities for this multifunctional thin film deposition technique.

10.
Adv Mater ; 27(19): 2996-3001, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25845976

RESUMEN

Composed exclusively of organic components, polyaniline (PANi), graphene, and double-walled nanotubes (DWNTs) are alternately deposited from aqueous solutions using a layer-by-layer assembly. The 40 quadlayer thin film (470 nm thick) exhibits electrical conductivity of 1.08 × 10(5) S m(-1) and a Seebeck coefficient of 130 µV K(-1) , producing a thermoelectric power factor of 1825 µW m(-1) K(-2) .

11.
ACS Appl Mater Interfaces ; 6(19): 16903-8, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25211181

RESUMEN

In an effort to reduce the flammability of polyurethane foam, a thin film of renewable inorganic nanoparticles (i.e., anionic vermiculite [VMT] and cationic boehmite [BMT]) was deposited on polyurethane foam via layer-by-layer (LbL) assembly. One, two, and three bilayers (BL) of BMT-VMT resulted in foam with retained shape after being exposed to a butane flame for 10 s, while uncoated foam was completely consumed. Cone calorimetry confirmed that the coated foam exhibited a 55% reduction in peak heat release rate with only a single bilayer deposited. Moreover, this protective nanocoating reduced total smoke release by 50% relative to untreated foam. This study revealed that 1 BL, adding just 4.5 wt % to PU foam, is an effective and conformal flame retardant coating. These results demonstrate one of the most efficient and renewable nanocoatings prepared using LbL assembly, taking this technology another step closer to commercial viability.

12.
ACS Appl Mater Interfaces ; 5(11): 4930-6, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23683121

RESUMEN

In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Membranas Artificiales , Azul de Metileno/química , Polímeros/química , Andamios del Tejido/química , Animales , Conductividad Eléctrica , Campos Electromagnéticos , Filtración/métodos , Humanos , Microscopía Electrónica de Rastreo , Protones , Espectrofotometría Infrarroja
13.
Langmuir ; 28(1): 841-8, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22070431

RESUMEN

The mechanism of the transition from a continuous morphology to a porous morphology within polyelectrolyte multilayers (PEMs) of linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) and PAA assembled by the layer-by-layer (LbL) technique is examined. These morphological changes were created by both acidic and basic postassembly treatments. Basic postassembly treatment is shown to create different types of porosity than acidic postassembly treatment. The morphological variation from the introduction of porosity to the collapse of these porous structures and the dissolution of films under postassembly treatments was observed by AFM, optical microscopy, quartz crystal microbalance (QCM), and SEM. These morphological transitions which are a result of structural rearrangement of weak polyelectrolytes due to pH changes are closely related to the neutralization of the polycations and the ionization of polyanions. Results obtained from FTIR spectroscopy and QCM confirm that polyelectrolytes are being selectively or partially released from the polyelectrolyte multilayers thin films (PEMs) in response to the pH treatment as a function of exposure time. In conclusion, here new information is presented about the structural reorganization found in a number of weak polyelectrolyte systems. This information will be useful in designing functional materials based on polyelectrolytes.

14.
Langmuir ; 26(16): 13637-43, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695614

RESUMEN

Patterning of soft films, especially their bulk and not only their surface properties, presents a challenge. Several lithographic techniques do exist, but many of them are complex or limited in their ability to change properties. A few methods of patterning polyelectrolyte multilayers (PEM) have been reported, including microcontact printing and selectively growing layers on patterned self-assembled monolayers, but these all come with certain limitations. We present here the use of a modified microcontact printing method, reactive wet stamping (r-WETs), using a hydrogel stamp soaked in aqueous solutions to create patterns in PEMs. With this technique we are able to locally cause swelling and porosity changes in the PEM films and use our method to qualitatively study the evolution of the porous film morphology. This technique has the potential to locally control chemical functionality, film thickness, and mechanical properties, leading to a new ability to control film architectures both at the film surface and within the bulk of the film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...